RSS-Feed abonnieren
DOI: 10.1055/s-0035-1548832
The Pathogenesis of Hashimoto’s Thyroiditis: Further Developments in our Understanding
Abstract
Hashimoto’s thyroiditis (HT) is part of a spectrum of thyroid autoimmune conditions and this review provides an update on the latest developments in the field. HT has a genetic predisposition with a number of immune-related and thyroid-specific genes conferring disease susceptibility. However, disentangling genes with protective and predisposing effect is a complex process that requires further work. The recent increase in the incidence of HT implicates environmental factors in disease pathogenesis including improved hygiene, increased dietary iodine intake, new treatment modalities and chemical agents. Additional unmodifiable predisposing factors include stress, climate, age and gender. Both cellular and humoral immunity play a role in HT pathogenesis. Defects in T regulatory cells and increased activation of follicular helper T cells may have a role in disease initiation/perpetuation. Infiltrating lymphocytes can be directly cytotoxic to thyroid follicular cells (TFC) or may affect cell viability/function indirectly through cytokine production, which alters TFC integrity and modulates their metabolic and immune function. Thyroid peroxidase and thyroglobulin antibodies are present in the majority of HT patients and help with management decisions. Antibodies against the sodium iodide symporter and pendrin are present in a minority with little known about their clinical relevance. In addition to immune cells, recent work has identified DNA fragments, generated following cell death, and micro RNA as potential factors in HT pathogenesis. Despite the large number of studies, the mechanistic pathways in HT are still not fully understood and further work is required to enhance our knowledge and identify novel preventative and therapeutic clinical targets.
Key words
autoimmune hypothyroidism - immunogenetics - environmental factors - immunopathogenesis - thyroid autoantibodiesPublikationsverlauf
Eingereicht: 03. Februar 2015
Angenommen: 04. März 2015
Artikel online veröffentlicht:
16. April 2015
Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart,
Germany
-
References
- 1 Hashimoto H. Zur Kenntniss der lymphomatösen Veränderung der Schilddrüse (Struma lymphomatosa). Arch Lin Chir 1912; 97: 219-248
- 2 Doniach D, Hudson RV. Lymphadenoid goitre (Hashimoto’s disease); diagnostic and biochemical aspects. Br Med J 1957; 1: 672-678
- 3 Carle A, Pedersen IB, Knudsen N, Perrild H, Ovesen L, Jorgensen T, Laurberg P. Thyroid volume in hypothyroidism due to autoimmune disease follows a unimodal distribution: evidence against primary thyroid atrophy and autoimmune thyroiditis being distinct diseases. J Clin Endocrinol Metab 2009; 94: 833-839
- 4 Hiromatsu Y, Satoh H, Amino N. Hashimoto’s thyroiditis: history and future outlook. Hormones (Athens) 2013; 12: 12-18
- 5 Weetman AP. The immunopathogenesis of chronic autoimmune thyroiditis one century after hashimoto. Eur Thyroid J 2013; 1: 243-250
- 6 Caturegli P, De RA, Rose NR. Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun Rev 2014; 13: 391-397
- 7 Effraimidis G, Wiersinga WM. Mechanisms in endocrinology: autoimmune thyroid disease: old and new players. Eur J Endocrinol 2014; 170: R241-R252
- 8 McLeod DS, Caturegli P, Cooper DS, Matos PG, Hutfless S. Variation in rates of autoimmune thyroid disease by race/ethnicity in US military personnel. JAMA 2014; 311: 1563-1565
- 9 Wiebolt J, Achterbergh R, den BA, van der Leij S, Marsch E, Suelmann B, de VR, van Haeften TW. Clustering of additional autoimmunity behaves differently in Hashimoto’s patients compared with Graves’ patients. Eur J Endocrinol 2011; 164: 789-794
- 10 Hou X, Li Y, Li J, Wang W, Fan C, Wang H, Zhang H, Shan Z, Teng W. Development of thyroid dysfunction and autoantibodies in Graves’ multiplex families: an eight-year follow-up study in Chinese Han pedigrees. Thyroid 2011; 21: 1353-1358
- 11 Brix TH, Hegedus L, Gardas A, Banga JP, Nielsen CH. Monozygotic twin pairs discordant for Hashimoto’s thyroiditis share a high proportion of thyroid peroxidase autoantibodies to the immunodominant region A. Further evidence for genetic transmission of epitopic “fingerprints”. Autoimmunity 2011; 44: 188-194
- 12 Outschoorn IM, Talor MV, Burek CL, Hoffman WH, Rose NR. Heritability analysis of IgG4 antibodies in autoimmune thyroid disease. Autoimmunity 2014; 47: 320-326
- 13 Huang CY, Chang TY, Chu CC, Lo FS, Ting WH, Lin CH, Wu YL, Chu SY, Chang SC, Chen WF, Lin CL, Lin WS, Lee YJ. The HLA-B gene and Hashimoto disease in Han Chinese children: a case-control and family-based study. Tissue Antigens 2012; 80: 431-436
- 14 Ueda S, Oryoji D, Yamamoto K, Noh JY, Okamura K, Noda M, Kashiwase K, Kosuga Y, Sekiya K, Inoue K, Yamada H, Oyamada A, Nishimura Y, Yoshikai Y, Ito K, Sasazuki T. Identification of independent susceptible and protective HLA alleles in Japanese autoimmune thyroid disease and their epistasis. J Clin Endocrinol Metab 2014; 99: E379-E383
- 15 Bernecker C, Ostapczuk M, Vordenbaumen S, Ehlers M, Thiel A, Schinner S, Willenberg H, Scherbaum WA, Schott M. HLA-A2 phenotype may be protective against Graves’ disease but not against Hashimoto’s thyroiditis in Caucasians. Horm Metab Res 2013; 45: 74-77
- 16 Ji R, Feng Y, Zhan WW. Updated analysis of studies on the cytotoxic T-lymphocyte-associated antigen-4 gene A49G polymorphism and Hashimoto’s thyroiditis risk. Genet Mol Res 2013; 12: 1421-1430
- 17 Luo L, Cai B, Liu F, Hu X, Wang L. Association of Protein Tyrosine Phosphatase Nonreceptor 22 (PTPN22) C1858T gene polymorphism with susceptibility to autoimmune thyroid diseases: a meta-analysis. Endocr J 2012; 59: 439-445
- 18 Li M, Sun H, Liu S, Yu J, Li Q, Liu P, Shen H, Sun D. CD40 C/T-1 polymorphism plays different roles in Graves’ disease and Hashimoto’s thyroiditis: a meta-analysis. Endocr J 2012; 59: 1041-1050
- 19 Zaaber I, Mestiri S, Marmouch H, Mahjoub S, Abid N, Hassine M, Bel Jr H, Said K. Polymorphisms in TSHR and IL1RN genes and the risk and prognosis of Hashimoto’s thyroiditis. Autoimmunity 2014; 47: 113-118
- 20 Yan N, Yu YL, Yang J, Qin Q, Zhu YF, Wang X, Song RH, Zhang JA. Association of interleukin-17A and -17F gene single-nucleotide polymorphisms with autoimmune thyroid diseases. Autoimmunity 2012; 45: 533-539
- 21 Walsh JP, Berry J, Liu S, Panicker V, Dayan CM, Brix TH, Hegedus L, Hou P, Shi B, Morahan G. The clinical presentation of autoimmune thyroid disease in men is associated with IL12B genotype. Clin Endocrinol (Oxf) 2011; 74: 508-512
- 22 Inoue N, Watanabe M, Morita M, Tatusmi K, Hidaka Y, Akamizu T, Iwatani Y. Association of functional polymorphisms in promoter regions of IL5, IL6 and IL13 genes with development and prognosis of autoimmune thyroid diseases. Clin Exp Immunol 2011; 163: 318-323
- 23 Tomizawa R, Watanabe M, Inoue N, Takemura K, Hidaka Y, Akamizu T, Hayakawa K, Iwatani Y. Association of functional GITR gene polymorphisms related to expression of glucocorticoid-induced tumour necrosis factor-receptor (GITR) molecules with prognosis of autoimmune thyroid disease. Clin Exp Immunol 2011; 165: 141-147
- 24 Xiao L, Muhali FS, Cai TT, Song RH, Hu R, Shi XH, Jiang WJ, Li DF, He ST, Xu J, Zhang JA. Association of single-nucleotide polymorphisms in the STAT3 gene with autoimmune thyroid disease in Chinese individuals. Funct Integr Genomics 2013; 13: 455-461
- 25 Ban Y, Tozaki T, Taniyama M, Skrabanek L, Nakano Y, Ban Y, Hirano T. Multiple SNPs in intron 41 of thyroglobulin gene are associated with autoimmune thyroid disease in the Japanese population. PLoS One 2012; 7: e37501
- 26 Stefan M, Jacobson EM, Huber AK, Greenberg DA, Li CW, Skrabanek L, Conception E, Fadlalla M, Ho K, Tomer Y. Novel variant of thyroglobulin promoter triggers thyroid autoimmunity through an epigenetic interferon alpha-modulated mechanism. J Biol Chem 2011; 286: 31168-31179
- 27 Santos LR, Duraes C, Mendes A, Prazeres H, Alvelos MI, Moreira CS, Canedo P, Esteves C, Neves C, Carvalho D, Sobrinho-Simoes M, Soares P. A polymorphism in the promoter region of the selenoprotein S gene (SEPS1) contributes to Hashimoto’s thyroiditis susceptibility. J Clin Endocrinol Metab 2014; 99: E719-E723
- 28 Simmonds MJ. GWAS in autoimmune thyroid disease: redefining our understanding of pathogenesis. Nat Rev Endocrinol 2013; 9: 277-287
- 29 Medici M, Porcu E, Pistis G, Teumer A, Brown SJ, Jensen RA, Rawal R, Roef GL, Plantinga TS, Vermeulen SH, Lahti J, Simmonds MJ, Husemoen LL, Freathy RM, Shields BM, Pietzner D, Nagy R, Broer L, Chaker L, Korevaar TI, Plia MG, Sala C, Volker U, Richards JB, Sweep FC, Gieger C, Corre T, Kajantie E, Thuesen B, Taes YE, Visser WE, Hattersley AT, Kratzsch J, Hamilton A, Li W, Homuth G, Lobina M, Mariotti S, Soranzo N, Cocca M, Nauck M, Spielhagen C, Ross A, Arnold A, van de Bunt M, Liyanarachchi S, Heier M, Grabe HJ, Masciullo C, Galesloot TE, Lim EM, Reischl E, Leedman PJ, Lai S, Delitala A, Bremner AP, Philips DI, Beilby JP, Mulas A, Vocale M, Abecasis G, Forsen T, James A, Widen E, Hui J, Prokisch H, Rietzschel EE, Palotie A, Feddema P, Fletcher SJ, Schramm K, Rotter JI, Kluttig A, Radke D, Traglia M, Surdulescu GL, He H, Franklyn JA, Tiller D, Vaidya B, de MT, Jorgensen T, Eriksson JG, O’Leary PC, Wichmann E, Hermus AR, Psaty BM, Ittermann T, Hofman A, Bosi E, Schlessinger D, Wallaschofski H, Pirastu N, Aulchenko YS, de la Chapelle A, Netea-Maier RT, Gough SC, Meyer Zu SH, Frayling TM, Kaufman JM, Linneberg A, Raikkonen K, Smit JW, Kiemeney LA, Rivadeneira F, Uitterlinden AG, Walsh JP, Meisinger C, den HM, Visser TJ, Spector TD, Wilson SG, Volzke H, Cappola A, Toniolo D, Sanna S, Naitza S, Peeters RP. Identification of novel genetic Loci associated with thyroid peroxidase antibodies and clinical thyroid disease. PLoS Genet 2014; 10: e1004123
- 30 Cooper JD, Simmonds MJ, Walker NM, Burren O, Brand OJ, Guo H, Wallace C, Stevens H, Coleman G, Franklyn JA, Todd JA, Gough SC. Seven newly identified loci for autoimmune thyroid disease. Hum Mol Genet 2012; 21: 5202-5208
- 31 Tomer Y, Hasham A, Davies TF, Stefan M, Concepcion E, Keddache M, Greenberg DA. Fine mapping of loci linked to autoimmune thyroid disease identifies novel susceptibility genes. J Clin Endocrinol Metab 2013; 98: E144-E152
- 32 Caturegli P, De RA, Chuang K, Dembele M, Iwama A, Iwama S. Hashimoto’s thyroiditis: celebrating the centennial through the lens of the Johns Hopkins hospital surgical pathology records. Thyroid 2013; 23: 142-150
- 33 Ott J, Meusel M, Schultheis A, Promberger R, Pallikunnel SJ, Neuhold N, Hermann M. The incidence of lymphocytic thyroid infiltration and Hashimoto’s thyroiditis increased in patients operated for benign goiter over a 31-year period. Virchows Arch 2011; 459: 277-281
- 34 Kondrashova A, Seiskari T, Ilonen J, Knip M, Hyoty H. The Hygiene ‘hypothesis’ and the sharp gradient in the incidence of autoimmune and allergic diseases between Russian Karelia and Finland. APMIS 2013; 121: 478-493
- 35 Aghini LF, Fiore E, Tonacchera M, Antonangeli L, Rago T, Frigeri M, Provenzale AM, Montanelli L, Grasso L, Pinchera A, Vitti P. The effect of voluntary iodine prophylaxis in a small rural community: the Pescopagano survey 15 years later. J Clin Endocrinol Metab 2013; 98: 1031-1039
- 36 Toulis KA, Anastasilakis AD, Tzellos TG, Goulis DG, Kouvelas D. Selenium supplementation in the treatment of Hashimoto’s thyroiditis: a systematic review and a meta-analysis. Thyroid 2010; 20: 1163-1173
- 37 van Zuuren EJ, Albusta AY, Fedorowicz Z, Carter B, Pijl H. Selenium Supplementation for Hashimoto’s Thyroiditis: Summary of a Cochrane Systematic Review. Eur Thyroid J 2014; 3: 25-31
- 38 Winther KH, Watt T, Bjørner JB, Cramon P, Feldt-Rasmussen U, Gluud C, Gram J, Groenvold M, Hegedüs L, Knudsen N, Rasmussen ÅK, Bonnema SJ. The chronic autoimmune thyroiditis quality of life selenium trial (CATALYST): study protocol for a randomized controlled trial. Trials 2014; 15: 115-126
- 39 Tamer G, Arik S, Tamer I, Coksert D. Relative vitamin D insufficiency in Hashimoto’s thyroiditis. Thyroid 2011; 21: 891-896
- 40 D’Aurizio F, Villalta D, Metus P, Doretto P, Tozzoli R. Is vitamin D a player or not in the pathophysiology of autoimmune thyroid diseases?. Autoimmun Rev 2014; Oct 12. pii: S1568-9972(14)00220-1 DOI: 10.1016/j.autrev.2014.10.008 [Epub ahead of print].
- 41 Torino F, Barnabei A, Paragliola R, Baldelli R, Appetecchia M, Corsello SM. Thyroid dysfunction as an unintended side effect of anticancer drugs. Thyroid 2013; 23: 1345-1366
- 42 Hasham A, Zhang W, Lotay V, Haggerty S, Stefan M, Concepcion E, Dieterich DT, Tomer Y. Genetic analysis of interferon induced thyroiditis (IIT): evidence for a key role for MHC and apoptosis related genes and pathways. J Autoimmun 2013; 44: 61-70
- 43 Weetman A. Immune reconstitution syndrome and the thyroid. Best Pract Res Clin Endocrinol Metab 2009; 23: 693-702
- 44 Daniels GH, Vladic A, Brinar V, Zavalishin I, Valente W, Oyuela P, Palmer J, Margolin DH, Hollenstein J. Alemtuzumab-related thyroid dysfunction in a phase 2 trial of patients with relapsing-remitting multiple sclerosis. J Clin Endocrinol Metab 2014; 99: 80-89
- 45 Visser R, de MQ, Netea-Maier RT, van der Ven AJ. Hashimoto’s thyroiditis presenting as acute painful thyroiditis and as a manifestation of an immune reconstitution inflammatory syndrome in a human immunodeficiency virus-seropositive patient. Thyroid 2012; 22: 853-855
- 46 Carle A, Bulow PI, Knudsen N, Perrild H, Ovesen L, Banke RL, Jorgensen T, Laurberg P. Smoking cessation is followed by a sharp but transient rise in the incidence of overt autoimmune hypothyroidism – a population-based, case-control study. Clin Endocrinol (Oxf) 2012; 77: 764-772
- 47 Effraimidis G, Strieder TG, Tijssen JG, Wiersinga WM. Natural history of the transition from euthyroidism to overt autoimmune hypo- or hyperthyroidism: a prospective study. Eur J Endocrinol 2011; 164: 107-113
- 48 Carle A, Pedersen IB, Knudsen N, Perrild H, Ovesen L, Rasmussen LB, Jorgensen T, Laurberg P. Moderate alcohol consumption may protect against overt autoimmune hypothyroidism: a population-based case-control study. Eur J Endocrinol 2012; 167: 483-490
- 49 Effraimidis G, Tijssen JG, Wiersinga WM. Alcohol consumption as a risk factor for autoimmune thyroid disease: a prospective study. Eur Thyroid J 2012; 1: 99-104
- 50 Caselli E, Zatelli MC, Rizzo R, Benedetti S, Martorelli D, Trasforini G, Cassai E, degli Uberti EC, Di LD, Dolcetti R. Virologic and immunologic evidence supporting an association between HHV-6 and Hashimoto’s thyroiditis. PLoS Pathog 2012; 8: e1002951
- 51 Effraimidis G, Tijssen JG, Strieder TG, Wiersinga WM. No causal relationship between Yersinia enterocolitica infection and autoimmune thyroid disease: evidence from a prospective study. Clin Exp Immunol 2011; 165: 38-43
- 52 Goldner WS, Sandler DP, Yu F, Hoppin JA, Kamel F, Levan TD. Pesticide use and thyroid disease among women in the Agricultural Health Study. Am J Epidemiol 2010; 171: 455-464
- 53 de Freitas CU, Grimaldi Campos RA, Rodrigues Silva MA, Panachao MR, de Moraes JC, Waissmann W, Roberto CA, Maeda MY, Minazzi Rodrigues RS, Goncalves BJ, Oliveira BS, Santos RT. Can living in the surroundings of a petrochemical complex be a risk factor for autoimmune thyroid disease?. Environ Res 2010; 110: 112-117
- 54 Lee TP, Chiang BL. Sex differences in spontaneous versus induced animal models of autoimmunity. Autoimmun Rev 2012; 11: A422-A429
- 55 Brix TH, Hansen PS, Kyvik KO, Hegedüs L. Aggregation of thyroid autoantibodies in twins from opposite-sex pairs suggests that microchimerism may play a role in the early stages of thyroid autoimmunity. J Clin Endocrinol Metab 2009; 94: 4439-4443
- 56 Simmonds MJ, Kavvoura FK, Brand OJ, Newby PR, Jackson LE, Hargreaves CE, Franklyn JA, Gough SC. Skewed X chromosome inactivation and female preponderance in autoimmune thyroid disease: an association study and meta-analysis. J Clin Endocrinol Metab 2014; 99: E127-E131
- 57 Lepez T, Vandewoestyne M, Hussain S, Van NF, Poppe K, Velkeniers B, Kaufman JM, Deforce D. Fetal microchimeric cells in blood of women with an autoimmune thyroid disease. PLoS One 2011; 6: e29646
- 58 Greer LG, Casey BM, Halvorson LM, Spong CY, McIntire DD, Cunningham FG. Antithyroid antibodies and parity: further evidence for microchimerism in autoimmune thyroid disease. Am J Obstet Gynecol 2011; 205: 471-474
- 59 Jorgensen KT, Pedersen BV, Nielsen NM, Jacobsen S, Frisch M. Childbirths and risk of female predominant and other autoimmune diseases in a population-based Danish cohort. J Autoimmun 2012; 38: J81-J87
- 60 Weetman AP. Immunity, thyroid function and pregnancy: molecular mechanisms. Nat Rev Endocrinol 2010; 6: 311-318
- 61 Effraimidis G, Tijssen JG, Brosschot JF, Wiersinga WM. Involvement of stress in the pathogenesis of autoimmune thyroid disease: a prospective study. Psychoneuroendocrinology 2012; 37: 1191-1198
- 62 Hamilton A, Newby PR, Carr-Smith JD, Disanto G, Allahabadia A, Armitage M, Brix TH, Chatterjee K, Connell JM, Hegedus L, Hunt PJ, Lazarus JH, Pearce SH, Robinson BG, Taylor JC, Vaidya B, Wass JA, Wiersinga WM, Weetman AP, Ramagopalan SV, Franklyn JA, Gough SC, Simmonds MJ. Impact of month of birth on the development of autoimmune thyroid disease in the United Kingdom and Europe. J Clin Endocrinol Metab 2014; 99: E1459-E1465
- 63 Cepon TJ, Snodgrass JJ, Leonard WR, Tarskaia LA, Klimova TM, Fedorova VI, Baltakhinova ME, Krivoshapkin VG. Circumpolar adaptation, social change, and the development of autoimmune thyroid disorders among the Yakut (Sakha) of Siberia. Am J Hum Biol 2011; 23: 703-709
- 64 Volpe R. Suppressor T lymphocyte dysfunction is important in the pathogenesis of autoimmune thyroid disease: a perspective. Thyroid 1993; 3: 345-352
- 65 MacDonald TT. Suppressor T cells, rebranded as regulatory T cells, emerge from the wilderness bearing surface markers. Gut 2002; 51: 311-312
- 66 Fehervari Z, Sakaguchi S. CD4+ Tregs and immune control. J Clin Invest 2004; 114: 1209-1217
- 67 Piccirillo CA. Regulatory T cells in health and disease. Cytokine 2008; 43: 395-401
- 68 Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 2008; 9: 239-244
- 69 Shevach EM. Suppressor T cells: Rebirth, function and homeostasis. Curr Biol 2000; 10: R572-R575
- 70 Pan D, Shin YH, Gopalakrishnan G, Hennessey J, De Groot LJ. Regulatory T cells in Graves’ disease. Clin Endocrinol (Oxf) 2009; 71: 587-593
- 71 Wang H, Zhao S, Tang X, Li J, Zou P. Changes of regulatory T cells in Graves’ disease. J Huazhong Univ Sci Technolog Med Sci 2006; 26: 545-547
- 72 Marazuela M, Garcia-Lopez MA, Figueroa-Vega N, de la Fuente H, Alvarado-Sanchez B, Monsivais-Urenda A, Sanchez-Madrid F, Gonzalez-Amaro R. Regulatory T cells in human autoimmune thyroid disease. J Clin Endocrinol Metab 2006; 91: 3639-3646
- 73 Mao C, Wang S, Xiao Y, Xu J, Jiang Q, Jin M, Jiang X, Guo H, Ning G, Zhang Y. Impairment of regulatory capacity of CD4+CD25+ regulatory T cells mediated by dendritic cell polarization and hyperthyroidism in Graves’ disease. J Immunol 2011; 186: 4734-4743
- 74 Glick AB, Wodzinski A, Fu P, Levine AD, Wald DN. Impairment of regulatory T-cell function in autoimmune thyroid disease. Thyroid 2013; 23: 871-878
- 75 Mirandola P, Gobbi G, Masselli E, Micheloni C, Di MD, Queirolo V, Chiodera P, Meschi T, Vitale M. Protein kinase Cepsilon regulates proliferation and cell sensitivity to TGF-1beta of CD4+ T lymphocytes: implications for Hashimoto thyroiditis. J Immunol 2011; 187: 4721-4732
- 76 Spolski R, Leonard WJ. IL-21 and T follicular helper cells. Int Immunol 2010; 22: 7-12
- 77 Zhu C, Ma J, Liu Y, Tong J, Tian J, Chen J, Tang X, Xu H, Lu L, Wang S. Increased frequency of follicular helper T cells in patients with autoimmune thyroid disease. J Clin Endocrinol Metab 2012; 97: 943-950
- 78 Ehlers M, Thiel A, Bernecker C, Porwol D, Papewalis C, Willenberg HS, Schinner S, Hautzel H, Scherbaum WA, Schott M. Evidence of a combined cytotoxic thyroglobulin and thyroperoxidase epitope-specific cellular immunity in Hashimoto’s thyroiditis. J Clin Endocrinol Metab 2012; 97: 1347-1354
- 79 Wong CP, Stevens R, Long B, Li L, Wang Y, Wallet MA, Goudy KS, Frelinger JA, Tisch R. Identical beta cell-specific CD8(+) T cell clonotypes typically reside in both peripheral blood lymphocyte and pancreatic islets. J Immunol 2007; 178: 1388-1395
- 80 Kotani T, Aratake Y, Hirai K, Fukazawa Y, Sato H, Ohtaki S. Apoptosis in thyroid tissue from patients with Hashimoto’s thyroiditis. Autoimmunity 1995; 20: 231-236
- 81 Baker Jr JR. Dying (apoptosing?) for a consensus on the Fas death pathway in the thyroid. J Clin Endocrinol Metab 1999; 84: 2593-2595
- 82 Kaczmarek E, Lacka K, Jarmolowska-Jurczyszyn D, Sidor A, Majewski P. Changes of B and T lymphocytes and selected apopotosis markers in Hashimoto’s thyroiditis. J Clin Pathol 2011; 64: 626-630
- 83 Marique L, Van RV, Gerard AC, Craps J, Senou M, Marbaix E, Rahier J, Daumerie C, Mourad M, Lengele B, Colin IM, Many MC. The expression of dual oxidase, thyroid peroxidase, and caveolin-1 differs according to the type of immune response (TH1/TH2) involved in thyroid autoimmune disorders. J Clin Endocrinol Metab 2014; 99: 1722-1732
- 84 Weetman AP. Cellular immune responses in autoimmune thyroid disease. Clin Endocrinol (Oxf) 2004; 61: 405-413
- 85 Walsh JP, Bremner AP, Feddema P, Leedman PJ, Brown SJ, O’Leary P. Thyrotropin and thyroid antibodies as predictors of hypothyroidism: a 13-year, longitudinal study of a community-based cohort using current immunoassay techniques. J Clin Endocrinol Metab 2010; 95: 1095-1104
- 86 Hamano H, Kawa S, Horiuchi A, Unno H, Furuya N, Akamatsu T, Fukushima M, Nikaido T, Nakayama K, Usuda N, Kiyosawa K. High serum IgG4 concentrations in patients with sclerosing pancreatitis. N Engl J Med 2001; 344: 732-738
- 87 Li Y, Nishihara E, Hirokawa M, Taniguchi E, Miyauchi A, Kakudo K. Distinct clinical, serological, and sonographic characteristics of hashimoto’s thyroiditis based with and without IgG4-positive plasma cells. J Clin Endocrinol Metab 2010; 95: 1309-1317
- 88 Kakudo K, Li Y, Hirokawa M, Ozaki T. Diagnosis of Hashimoto’s thyroiditis and IgG4-related sclerosing disease. Pathol Int 2011; 61: 175-183
- 89 Dahlgren M, Khosroshahi A, Nielsen GP, Deshpande V, Stone JH. Riedel’s thyroiditis and multifocal fibrosclerosis are part of the IgG4-related systemic disease spectrum. Arthritis Care Res (Hoboken) 2010; 62: 1312-1318
- 90 Kemp EH, Sandhu HK, Watson PF, Weetman AP. Low frequency of pendrin autoantibodies detected using a radioligand binding assay in patients with autoimmune thyroid disease. J Clin Endocrinol Metab 2013; 98: E309-E313
- 91 Brix TH, Hegedus L, Weetman AP, Kemp HE. Pendrin and NIS antibodies are absent in healthy individuals and are rare in autoimmune thyroid disease: evidence from a Danish twin study. Clin Endocrinol (Oxf) 2014; 81: 440-444
- 92 Ajjan RA, Kemp EH, Waterman EA, Watson PF, Endo T, Onaya T, Weetman AP. Detection of binding and blocking autoantibodies to the human sodium-iodide symporter in patients with autoimmune thyroid disease. J Clin Endocrinol Metab 2000; 85: 2020-2027
- 93 Ajjan RA, Findlay C, Metcalfe RA, Watson PF, Crisp M, Ludgate M, Weetman AP. The modulation of the human sodium iodide symporter activity by Graves’ disease sera. J Clin Endocrinol Metab 1998; 83: 1217-1221
- 94 McLachlan SM, Rapoport B. Thyrotropin-blocking autoantibodies and thyroid-stimulating autoantibodies: potential mechanisms involved in the pendulum swinging from hypothyroidism to hyperthyroidism or vice versa. Thyroid 2013; 23: 14-24
- 95 Kamath C, Young S, Kabelis K, Sanders J, Adlan MA, Furmaniak J, Rees Smith B, Premawardhana LD. Thyrotrophin receptor antibody characteristics in a woman with long-standing Hashimoto’s who developed Graves’ disease and pretibial myxoedema. Clin Endocrinol (Oxf) 2012; 77: 465-470
- 96 Lumachi F, Basso SM, Orlando R. Cytokines thyroid diseases and thyroid cancer. Cytokine 2010; 50: 229-233
- 97 Ajjan RA, Weetman AP. Cytokines in thyroid autoimmunity. Autoimmunity 2003; 36: 351-359
- 98 Bettelli E, Korn T, Kuchroo VK. Th17: the third member of the effector T cell trilogy. Curr Opin Immunol 2007; 19: 652-657
- 99 Pan HF, Li XP, Zheng SG, Ye DQ. Emerging role of interleukin-22 in autoimmune diseases. Cytokine Growth Factor Rev 2013; 24: 51-57
- 100 Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol 2009; 10: 864-871
- 101 Figueroa-Vega N, Alfonso-Perez M, Benedicto I, Sanchez-Madrid F, Gonzalez-Amaro R, Marazuela M. Increased circulating pro-inflammatory cytokines and Th17 lymphocytes in Hashimoto’s thyroiditis. J Clin Endocrinol Metab 2010; 95: 953-962
- 102 Bai X, Sun J, Wang W, Shan Z, Zheng H, Li Y, Zhao Y, Gong M, Teng W. Increased differentiation of Th22 cells in Hashimoto’s thyroiditis. Endocr J. 2014
- 103 Song RH, Yu ZY, Qin Q, Wang X, Muhali FS, Shi LF, Jiang WJ, Xiao L, Li DF, Zhang JA. Different levels of circulating Th22 cell and its related molecules in Graves’ disease and Hashimoto’s thyroiditis. Int J Clin Exp Pathol 2014; 7: 4024-4031
- 104 Ruggeri RM, Saitta S, Cristani M, Giovinazzo S, Tigano V, Trimarchi F, Benvenga S, Gangemi S. Serum interleukin-23 (IL-23) is increased in Hashimoto’s thyroiditis. Endocr J 2014; 61: 359-363
- 105 Ruffilli I, Ferrari SM, Colaci M, Ferri C, Fallahi P, Antonelli A. IP-10 in autoimmune thyroid disease. Horm Metab Res 2014; 46: 597-602
- 106 Rebuffat SA, Kammoun-Krichen M, Charfeddine I, Ayadi H, Bougacha-Elleuch N, Peraldi-Roux S. IL-1beta and TSH disturb thyroid epithelium integrity in autoimmune thyroid diseases. Immunobiology 2013; 218: 285-291
- 107 Kono H, Rock KL. How dying cells alert the immune system to danger. Nat Rev Immunol 2008; 8: 279-289
- 108 Ishii KJ, Suzuki K, Coban C, Takeshita F, Itoh Y, Matoba H, Kohn LD, Klinman DM. Genomic DNA released by dying cells induces the maturation of APCs. J Immunol 2001; 167: 2602-2607
- 109 Kawashima A, Tanigawa K, Akama T, Wu H, Sue M, Yoshihara A, Ishido Y, Kobiyama K, Takeshita F, Ishii KJ, Hirano H, Kimura H, Sakai T, Ishii N, Suzuki K. Fragments of genomic DNA released by injured cells activate innate immunity and suppress endocrine function in the thyroid. Endocrinology 2011; 152: 1702-1712
- 110 Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles. Cell 2009; 136: 26-36
- 111 Bernecker C, Lenz L, Ostapczuk MS, Schinner S, Willenberg H, Ehlers M, Vordenbaumen S, Feldkamp J, Schott M. MicroRNAs miR-146a1, miR-155_2, and miR-200a1 are regulated in autoimmune thyroid diseases. Thyroid 2012; 22: 1294-1295
- 112 Yamada H, Itoh M, Hiratsuka I, Hashimoto S. Circulating microRNAs in autoimmune thyroid diseases. Clin Endocrinol (Oxf) 2014; 81: 276-281