CC BY 4.0 · Organic Materials 2023; 05(04): 207-221
DOI: 10.1055/a-2222-7218
Covalent Organic Frameworks (COFs)
Short Review

Recent Advances of Covalent Organic Frameworks as Water Splitting Electrocatalysts

a   State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. of China
,
Jie Zhao
b   SINOPEC Research Institute of Petroleum Processing, P. R. of China
,
Fengqian Chen
a   State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. of China
,
a   State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. of China
› Author Affiliations


Abstract

Developing high-performance, durable, yet low-lost catalysts for electrocatalytic water splitting technology has been a research priority to tackle the global energy crisis. In this regard, covalent organic frameworks (COFs) have received great attention as promising water splitting electrocatalysts as they can provide an excellent platform for the settlement of electrocatalytic active site, high porosity, and good stability. In this review, recent advances on the design and application of COFs for water electrolysis, which are hydrogen and oxygen evolution reaction electrocatalysts, are briefly discussed. Among them, both noble and non-noble metals containing COFs as well as metal-free COF-based electrocatalysts are elaborated. Furthermore, a brief outlook on the development of COFs in the field of water splitting electrocatalysis is provided.

These authors contributed equally.




Publication History

Received: 10 October 2023

Accepted after revision: 28 November 2023

Accepted Manuscript online:
05 December 2023

Article published online:
15 December 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Aricò AS, Bruce P, Scrosati B, Tarascon J, van Schalkwijk W. Nat. Mater. 2005; 4: 366
  • 2 Zou X, Zhang Y. Chem. Soc. Rev. 2015; 44: 5148
  • 3 Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao SZ. Chem. Rev. 2018; 118: 6337
  • 4 Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS. Chem. Rev. 2010; 110: 6446
  • 5 Hisatomi T, Kubota J, Domen K. Chem. Soc. Rev. 2014; 43: 7520
  • 6 Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Chem. Soc. Rev. 2015; 44: 2060
  • 7 Antolini E. ACS Catal. 2014; 4: 1426
  • 8 Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y. J. Phys. Chem. Lett. 2012; 3: 399
  • 9 Cui X, Gao L, Lei S, Liang S, Zhang J, Sewell CD, Xue W, Liu Q, Lin Z, Yang Y. Adv. Funct. Mater. 2021; 31: 2009197
  • 10 Wang H, Liu R, Li Y, Lü X, Wang Q, Zhao S, Yuan K, Cui Z, Li X, Xin S, Zhang R, Lei M, Lin Z. Joule 2018; 2: 337
  • 11 Gao D, Guo J, Cui X, Yang L, Yang Y, He H, Xiao P, Zhang Y. ACS Appl. Mater. Interfaces 2017; 9: 22420
  • 12 Yang Y, Zhou M, Guo W, Cui X, Li Y, Liu F, Xiao P, Zhang Y. Electrochim. Acta 2015; 174: 246
  • 13 Zhao X, Yang Y, Li Y, Cui X, Zhang Y, Xiao P. J. Mater. Sci. 2016; 51: 3724
  • 14 Cui X, Xiao P, Wang J, Zhou M, Guo W, Yang Y, He Y, Wang Z, Yang Y, Zhang Y, Lin Z. Angew. Chem. Int. Ed. 2017; 56: 4488
  • 15 Zhang J, Zhao Z, Xia Z, Dai L. Nat. Nanotechnol. 2015; 10: 444
  • 16 Peng P, Zhou Z, Guo J, Xiang Z. ACS Energy Lett. 2017; 2: 1308
  • 17 Xiang Z, Xue Y, Cao D, Huang L, Chen JF, Dai L. Angew. Chem. Int. Ed. 2014; 53: 2433
  • 18 Côté AP, Benin AI, Ockwig NW, OʼKeeffe M, Matzger AJ, Yaghi OM. Science 2005; 310: 1166
  • 19 Waller PJ, Gándara F, Yaghi OM. Acc. Chem. Res. 2015; 48: 3053
  • 20 Ji C, Su K, Wang W, Chang J, El-Sayed ESM, Zhang L, Yuan D. CCS Chem. 2022; 41: 3094
  • 21 Yusran Y, Li H, Guan X, Fang Q, Qiu S. EnergyChem 2020; 2: 100035
  • 22 Yusran Y, Fang Q, Valtchev V. Adv. Mater. 2020; 32: 2002038
  • 23 Sun J, Xu Y, Lv Y, Zhang Q, Zhou X. CCS Chem. 2023; 5: 1259
  • 24 Ding S-Y, Wang W. Chem. Soc. Rev. 2013; 42: 548
  • 25 Wan S, Gándara F, Asano A, Furukawa H, Saeki A, Dey SK, Liao L, Ambrogio MW, Botros YY, Duan X, Seki S, Stoddart JF, Yaghi OM. Chem. Mater. 2011; 23: 4094
  • 26 Zhang CR, Cui WR, Xu RH, Chen XR, Jiang W, Wu YDi, Yan RH, Liang RP, Qiu JD. CCS Chem. 2021; 3: 168
  • 27 Liu Y, Ren J, Wang Y, Zhu X, Guan X, Wang Z, Zhou Y, Zhu L, Qiu S, Xiao S, Fang Q. CCS Chem. 2023; 5: 2033
  • 28 Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM. Chem. Soc. Rev. 2017; 46: 337
  • 29 Wu Y, Veleta JM, Tang D, Price AD, Botez CE, Villagrán D. Dalton Trans. 2018; 47: 8801
  • 30 Conway BE, Tilak BV. Electrochim. Acta 2002; 47: 3571
  • 31 Man IC, Su HY, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J. ChemCatChem 2011; 3: 1159
  • 32 Danilovic N, Subbaraman R, Chang KC, Chang SH, Kang YJ, Snyder J, Paulikas AP, Strmcnik D, Kim YT, Myers D, Stamenkovic VR, Markovic NM. J. Phys. Chem. Lett. 2014; 5: 2474
  • 33 Diercks CS, Yaghi OM. Science 2017; 355: eaal1585
  • 34 Guan X, Li H, Ma Y, Xue M, Fang Q, Yan Y, Valtchev V, Qiu S. Nat. Chem. 2019; 11: 587
  • 35 Bhunia S, Das SK, Jana R, Peter SC, Bhattacharya S, Addicoat M, Bhaumik A, Pradhan A. ACS Appl. Mater. Interfaces 2017; 9: 23843
  • 36 Yue J, Ding X, Song L, Wang Y, Yang P, Ma Y, Tang B. Microporous Mesoporous Mater. 2022; 344: 112169
  • 37 Zhou D, Tan X, Wu H, Tian L, Li M. Angew. Chem. Int. Ed. 2019; 58: 1376
  • 38 Zhao Y, Liang Y, Wu D, Tian H, Xia T, Wang W, Xie W, Hu X, Tian X, Chen Q. Small 2022; 18: 2107750
  • 39 Sun X, Hu Y, Fu Y, Yang J, Song D, Li B, Xu W, Wang NSmall. 2023; in press DOI: 10.1002/smll.202305978.
  • 40 Bai Y, Liu Y, Liu M, Wang X, Shang S, Gao W, Du C, Qiao Y, Chen J, Dong J, Liu Y. Angew. Chem. Int. Ed. 2022; 61: e202113067
  • 41 Aiyappa HB, Thote J, Shinde DB, Banerjee R, Kurungot S. Chem. Mater. 2016; 28: 4375
  • 42 Zhao X, Pachfule P, Li S, Langenhahn T, Ye M, Schlesiger C, Praetz S, Schmidt J, Thomas A. J. Am. Chem. Soc. 2019; 141: 6623
  • 43 Liu M, Liu S, Cui C, Miao Q, He Y, Li X, Xu Q, Zeng G. Angew. Chem. Int. Ed. 2022; 61: e202213522
  • 44 Gong C, Yang X, Wei X, Dai F, Zhang T, Wang D, Li M, Jia J, She Y, Xu G, Peng Y. Mater. Chem. Front. 2022; 7: 230
  • 45 Jarju JJ, Díez AM, Frey L, Sousa V, Carbó-Argibay E, Gonçalves LPL, Medina DD, Lebedev OI, Kolenʼko YV, Salonen LM. Mater. Today Chem. 2022; 26: 101032
  • 46 Gao Z, Gong LLe, He XQ, Su XM, Xiao LH, Luo F. Inorg. Chem. 2020; 59: 4995
  • 47 Liang Y, Xia T, Wu Z, Yang Y, Li Y, Sui Z, Li C, Fan R, Tian X, Chen Q. Mater. Today Chem. 2022; 24: 100777
  • 48 Mullangi D, Dhavale V, Shalini S, Nandi S, Collins S, Woo T, Kurungot S, Vaidhyanathan R. Adv. Energy Mater. 2016; 6: 1600110
  • 49 Nandi S, Singh SK, Mullangi D, Illathvalappil R, George L, Vinod CP, Kurungot S, Vaidhyanathan R. Adv. Energy Mater. 2016; 6: 1601189
  • 50 Wang X, Sun L, Zhou W, Yang L, Ren G, Wu H, Deng WQ. Cell Rep. Phys. Sci. 2022; 3: 100804
  • 51 Mondal S, Mohanty B, Nurhuda M, Dalapati S, Jana R, Addicoat M, Datta A, Jena BK, Bhaumik A. ACS Catal. 2020; 10: 5623
  • 52 Xia W, Ji C, Wang R, Qiu S, Fang Q. Acta Phys. Chim. Sin. 2023; 39: 2212057
  • 53 Celebi K, Buchheim J, Wyss RM, Droudian A, Gasser P, Shorubalko I, Kye JIl, Lee C, Park HG. Science 2014; 344: 289
  • 54 Morales-Guio CG, Stern LA, Hu X. Chem. Soc. Rev. 2014; 43: 6555
  • 55 Gao WY, Chrzanowski M, Ma S. Chem. Soc. Rev. 2014; 43: 5841
  • 56 Chen Y, Hoang T, Ma S. Inorg. Chem. 2012; 51: 12600
  • 57 Geng K, He T, Liu R, Tan KT, Li Z, Tao S, Gong Y, Jiang Q, Jiang D. Chem. Rev. 2020; 120: 8814
  • 58 Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed. 2008; 47: 3450
  • 59 Hug S, Stegbauer L, Oh H, Hirscher M, Lotsch BV. Chem. Mater. 2015; 27: 8001
  • 60 Qiao S, Zhang B, Li Q, Li Z, Wang W, Zhao J, Zhang X, Hu Y. ChemSusChem 2019; 12: 5032
  • 61 Chen X, Yu K, Shen Y, Feng Y, Zhu Z. ACS Appl. Mater. Interfaces 2017; 9: 42139
  • 62 Reier T, Oezaslan M, Strasser P. ACS Catal. 2012; 2: 1765
  • 63 Blakemore JD, Crabtree RH, Brudvig GW. Chem. Rev. 2015; 115: 12974
  • 64 Han A, Chen H, Sun Z, Xu J, Du P. Chem. Commun. 2015; 51: 11626
  • 65 Shaik S, Hirao H, Kumar D. Acc. Chem. Res. 2007; 40: 532
  • 66 Lin C, Zhang L, Zhao Z, Xia Z. Adv. Mater. 2017; 29: 1606635
  • 67 Gong L, Yang X, Gao Y, Yang G, Yu Z, Fu X, Wang Y, Qi D, Bian Y, Wang K, Jiang J. J. Mater. Chem. A 2022; 10: 16595
  • 68 Gu S, Hao R, Chen J, Chen X, Liu K, Hussain I, Liu G, Wang Z, Gan Q, Guo H, Li M, Zhang K, Lu Z. Mater. Chem. Front. 2022; 6: 2545
  • 69 Urbani M, Ragoussi M-E, Nazeeruddin MK, Torres T. Coord. Chem. Rev. 2019; 381: 1
  • 70 Xu Y, Jin S, Xu H, Nagai A, Jiang D. Chem. Soc. Rev. 2013; 42: 8012
  • 71 Li H, Chang J, Li S, Guan X, Li D, Li C, Tang L, Xue M, Yan Y, Valtchev V, Qiu S, Fang Q. J. Am. Chem. Soc. 2019; 141: 13324